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Equations are derived for stress concentration near a crack of closed contour lying in a plane. 
A system of one-dimensional integral equations for  the concentration factor is obtained. The 
right sides of the equations contain the initial approximation - -  a solution of the problem of a 
circular crack whose sides are acted upon by nonaxisymmetric loading. 

In solving mixed problems for harmonic functions, it is necessary to evaluate functions on boundary 
segments on which their values are not specified in boundary-value problems. For example, in the problem 
of stationary filtration of a liquid by the Darcy rule into the depth of a homogeneous porous half-space 
through a permeable spot on the surface, the pressure of the overlying liquid on the spot is known, and in the 
impermeable part of the boundary outside the permeable spot, the normal component of the vector velocity 
is equal to zero. A calculation of the liquid velocity normal to the permeable part of the boundary is required 
to determine the liquid flow rate. In the mixed problem of a brittle opening-mode crack, displacements on the 
crack extension in the crack plane and varying stress normal to tile crack are specified. An interesting quantity 
in this problem is the stress on the crack extension since from the stress-intensity factor, it is possible to 
determine the stable form of the crack. 

Usually, the boundary equations of potential theory are employed in determining such quantities. In 
the crack problem, two methods of calculation are possible. The first method uses the Fredholm equation of 
the first kind, in which the displacement w on the crack is expressed in terms of the stress cr as 

27r oo 

w(r,v~.0) - 1 [ [ pcr(p,a,O) dpda (1) 
J J R(p, ,o - 
0 0 

Itere and below, z = 0, r < l(0) is the position of the crack in the cylindrical coordinates (r, ~), z), R(p, r, J - 
a) is the distance between the points (r,v~) and (p ,a) ,  and A = #/(1 - u), where # and u are the shear 
modulus and Poisson's constant. 

Since, by virtue of symmetry, the displacement is equal to zero on the crack extension z = 0 and 
r > l(t~), we obtain an equation for the unknown function cr = c% at z = 0 and r > l(~0) [the values of 
cr = c~_ for r < l(~) are specified]. The instability of calculation schemes for equations of this type and the 
unboundedness of the~region in which solutions are sought hinder the search for singular solutions, and the 
sought function is a singular solution. 

In the second method,  an equation for the boundary solution is obtained from the equation given above 
by inversion if the integrals are understood as an integral transformation of the function c~ to w: 

A lim O / / r 0) = pw(p, 0) [ d  + R2(p, r, -- (2) 
0 0 

The parameter  e is introduced to reduce the singularity of the kernel. 
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For r < /(O), this expression is an integral equation for displacement. (It contains the derivative of 
the double-layer potential with respect to the normal.) It is stable in calculations, but the high degree of 
singularity leads to difficulties in numerical implementation. In addition, the stress is evaluated from the 
displacement found, and this introduces an additional error in calculations of the stress-intensity factor. 

In the present paper, to calculate the stress-intensity factor, we derive a modified integral boundary 
equation that  is "intermediate" between Eqs. (1) and (2). 

By means of Papkovich representations, determination of the opening-mode crack parameters reduces 
to seeking one harmonic function f (r ,  O, z). The displacements and stresses can be expressed in terms of this 
function. For example, for the normal components of the displacement and stress vectors on a site with normal 
parallel to the z axis, we have 

w = 2 1 -  u 2 0-z Oz' a =  2# 1 -  ~z Oz ~" 

In the problem of an opening-mode crack whose points r < l(0) lie in the plane z = 0, the function f 
should satisfy the conditions 

c92faz 2 1 Ofo_..7 0 [r > / (0 ) ] .  - 2#cr_(r ,  0)  [r < / ( 0 ) ] ,  = 

It is assumed that  the crack contour does not have angular points, and, for simplicity, it is considered star- 
shaped. 

We examine the upper half-space. Expanding the functions f ,  w, and cr in complex Fourier series in 
the angular coordinate and performing a Hankel transformation with kernel rJn(qr) (q is a transformation 
parameter) for the factors w,~ and an, for each harmonics we obtain solutions that  decrease exponentially 
along z. In the crack plane, the Hankel images of the Fourier coefficients are related by the condition (for 
z = 0, the dependence on this argument  for all functions is omitted below) 

alia(q) = --AqwH(q). 

In this equality, we convert to preimages. We invert the Hankel images with integer indices using the inversion 
formula for the Hankel transformation with half-integer indices. Multiplying the last equality by v~Jn+a/2(qx) 
and integrating it with respect to q taking into account the formula for discontinuous integrals (see [1, formula 
6.575.1]), we have { 0 

f qU-Vdv+l(aq)Jg(bq) dq = (a 2 _ b2)V-Ub l, 
0 2V-Ua~+lF(u-  # + l ) '  

where F is a gamma function. 

a < b ,  

a >  b, 

(4) 

We obtain the following equations for the coefficients of the harmonics: 
T 

After summation over n in infinite limits with weight exp (in~) taking into account the expressions of 
the Fourier coefficients in terms of the functions expanded in a serics, the equations reduce to the following 
integral equation with respect to the unknown half-opening of the crack w and the stress on the crack extension 
a = ~r+ (~r = a_ + a+, where or_ is specified): 

f ") dpd,  
-R~(p,~,O---a- ) = Ax J Op[ R2(p,x,O p2~~_z2' 

0 0 0 x 

R 2 ( p ,  z ,  0 - = p2 _ c o s  ( 0  - ,:,) + :r 2. 
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In the particular case of a circular opening-mode crack l(0) = L = const that  opens under  the action 
of nonaxisymmetric  loading on the sides, the solution of this equation is known (see, for example,  [2]): 

- ~  f l ] pQ(p" x2--Lr'--O) dp r2 o 4g_i__i  (o < < L), 

2 p2 dp 
o'+(r, 0) = r rx /~- -  L2 J ~--_-p-y (L < r < oc), (.5) 

0 
27r 2 2 

q(p,r,O) = ~-~ j R2(p , r ,~_a  ) 
0 

When the stress on the crack does not depend on the angular coordinate, the solution becomes 
simpler: calculation of the Poisson's integral yields the function Q = c,_(p), and (5) becomes a solution 
of the axisymmetric problem [3]. 

We formulate integral equations for the unknown functions in the case where the distance to the crack 
side is variable. For this, we first convert Eqs. (3) by dividing the region of integration along the radial 
coordinate into two parts (0, L) and (L, r 

x oo L 

ttere the parameter  L is an arbitrary constant parameter. We note that  all functions in (6) do not depend 
on L, i.e., the introduction of the parameter  is an identical transformation. The  only requirement is that  the 
right side be considered for z > L. 

The next manipulat ion involves inversion, in the interval (L, z), of the Abelian integral operator on 
the left, after which, for r > L, we obtain 

r 

+.(,-,,-) ; xdx F.(,-,O) 
O'n (r) A ~r2 =_~2"- A j[O.(r ,x)  - r  r)] (r 2 _ x2)3/2 ~ ,  

L 

7r W n ( P ) \ p r /  .I , ~ 2  - x 2' r 2 -fi2 
M r  0 

We convert from the Fourier coefficients to the sought functions by multiplying the equality by 
exp(in0) .  Taking into account that  the previously introduced parameter  L does not hinder summat ion  of 
the series, for the fimctions in the region r > L, we obtain 

1 [2~[L ~ _ p2 dp da 
o(r,  0) + 

0 0 

+(r,  r, tg) r[ x dx 
= dx/r2 - L  2 A J[qP(r'x'O)-O(r'r't~)] ( r2 __ Z 2 ) 3 / 2 ,  (7) 

L 

x [2~" ? )  O_.O[w(p, a) p 2 r 2 - - x  4 ] dpd~ 
q~(r,x, t~) 

If l(v~) = L = const, the terms on the  right side of Eq. (7) vanish and the second term in the integrand 
on the left side contains the known stress on the crack a_.  The  stress cr = or+ obtained in (7) coincides with 
solution (5). 
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Performing similar manipulat ions for r < L, we obtain the following equation for points in the 
additional region: 

1 2:r l(a) L 

0 L n 2 ( p ' r ' t ~ - - a ) q  p 2 - L 2 - - - r  ~ / '~ - - r2  ' 
(8) 

1 f2~ I'X x4 ) dp da 

0 0 R2(x2, pr, O _ a)~t-~ _ p2 

The displacement is integrated over the region l(a) > L. 
If the crack contour is a circle, Eq. (8) becomes the first equality in solution (5). 
In (7) and (8), we divide the region of integration with respect to the  coordinate a into n sectors 

(ak - hk, ak + hk). We assume that  within each sector, the stress and displacement  do not depend on the 
circumferential coordinate and are equal to their values on the bisectors ak. The  variable step 2hk can be 
selected so that  the curve p = l(a) is divided by rays into equal segments. Wi th in  each sector, the crack 
contour is replaced by a circular arc p = l(ak) = Ik, where k = 0, 1 , . . .  ,n .  

Replacing the integrals over the variable a by sums and taking into account  that  the kernel of the 
equation is integrable in the kth  sector: 

~ r 2 _ f12 

f R2(p, r, 0 i - ~) 
Otk--h k 

da = 27r sign (r - p)Sjk + 2Kjk(r,  p), 

r - p  l T j -  a k -  hk)  ( ~ - p  
Kjk(r ,p)  = arctan (r--+-- cot - arctan 

p 2 + p  

we obtain the following system of one-dimensional integral equations: 

~j+(~) + 

Oj - ak + h k )  
cot 

2 ] 

lj ~ _ p2 dp ' 

. tk q l  2 _ p2 dp 
2 f + : 

~ 2 ~  = 0 

r 
x dx f 

- A  ] [ r  x) - e~j(r, r)] (~2 x2)3/2  
zj 

wj(r) - ~k/-~j - r2 

(r > lj), 

%(~,r) 
+ A ~ - - l ~  

- -  ~ ~1/ pwk(p)Kjk(r,p)dp _ 

. - 

] O/j(r, x) dx 
V ~ 2  _ r2 

T 

~j ( r , x )  = ~-5 k=o [wk(p)Kjk(x2'pr)] qp2 _ x 2' 

2 - t, j k (x ,  pr)) kOj(r,x)= 7 r Y A  Pak(P)(~rc$Jk ~/z" -- p2 
k----0 0 

wj(r)--w(r,O), aj(r)-- ~(r ,0)  (j = 0 , 1 , . . . , n )  

dp 

(r < lj), 

Here 6jk is the Kronecker delta. 
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In transforming from Eqs. (7) and (8) to the discrete equations, we took into account that  the sought 
solution should not depend on the parameter  L, and, hence, within the j t h  sector, the values of L were set 
equal to the constant  lj. 

The system proposed here has the following advantages. 
(1) To determine the stress concentration near the crack, it suffices to "immerse" the crack in a finite 

region 0 < r < max l(v~) + const. 

(2) It is possible to convert to the new unknown function X(r ,  0): 

w(r,~)=r [0 ~ r ~< l(O)], a(r,O)= Al(O)X(r'O) 

which is already continuous 
obtained from the following 

Here o "A_ = ak-/A. 

[lO) < r], 

at points of the smooth contour. On both sides of the contour, this function is 
unified system of equations: 

2 ~ ~pXk(p)Ki__j_k(r,P)~k_-p2dp 1 ]kOj(r,x)dx (r<lj),  

2 
lj Xj (r) + 

lj 
p X k ( # < j k ( r ,  - dp 

k=0  lk 

T 
x d x  

(r 2 -- x2)3/2 
lj 

(r > lj), (9) 

 i(r, x )  - 

$J 

Kjk(x2,pr)) p dp 
~ / x  2 _ p2 ' 

~-~ k=0 

2 n tk : ~ j _ p 2 d p .  

In the system of one-dimensional equations (9), the sought quantities on the crack and its extension 
are "tied up." For example, the interval r < lj on the right side of the first equation contains unknowns from 
the interval p > lk for I k < lj. The right sides of the equations include terms that  already take account of the 
basic features of the solution for varying nonaxisymmetric loading on the circular arcs that  approximate the 
initial contour. Therefore, one can hope for a rapid convergence to the solution in calculations of the present 
system using the method  of successive approximations. 
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